GcpE is involved in the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli.
نویسندگان
چکیده
In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE.
منابع مشابه
Crystal structure of IspF from Bacillus subtilis and absence of protein complex assembly amongst IspD/IspE/IspF enzymes in the MEP pathway
2-C-Methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF) is a key enzyme in the 2-C-Methyl-d-erythritol-4-phosphate (MEP) pathway of isoprenoid biosynthesis. This enzyme catalyzes the 4-diphosphocytidyl-2-C-methyl-d-erythritol 2-phosphate (CDPME2P) to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) with concomitant release of cytidine 5'-diphospate (CMP). Bacillus subtilis is a potenti...
متن کاملA structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis
2-C-Methyl-D-erythritol-4-phosphate cytidyltransferase (IspD) is an essential enzyme in the mevalonate-independent pathway of isoprenoid biosynthesis. This enzyme catalyzes 2-C-Methyl-d-erythritol 4-phosphate (MEP) and cytosine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDPME) and inorganic pyrophosphate (PPi). Bacillus subtilis was a kind of excellent isoprene producer. ...
متن کاملStructure and reactivity in the non-mevalonate pathway of isoprenoid biosynthesis.
The function, structure and mechanism of two Escherichia coli enzymes involved in the non-mevalonate route of isoprenoid biosynthesis, 2C-methyl-D-erythritol 4-phosphate cytidylyltransferase and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, are reviewed. Comparisons of each with enzymes from microbial pathogens highlight important conservation of sequence suggestive of similarities in s...
متن کاملCombination of Entner-Doudoroff Pathway with MEP Increases Isoprene Production in Engineered Escherichia coli
Embden-Meyerhof pathway (EMP) in tandem with 2-C-methyl-D-erythritol 4-phosphate pathway (MEP) is commonly used for isoprenoid biosynthesis in E. coli. However, this combination has limitations as EMP generates an imbalanced distribution of pyruvate and glyceraldehyde-3-phosphate (G3P). Herein, four glycolytic pathways-EMP, Entner-Doudoroff Pathway (EDP), Pentose Phosphate Pathway (PPP) and Dah...
متن کاملIsoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.
Higher plants, several algae, bacteria, some strains of Streptomyces and possibly malaria parasite Plasmodium falciparum contain the novel, plastidic DOXP/MEP pathway for isoprenoid biosynthesis. This pathway, alternative with respect to the classical mevalonate pathway, starts with condensation of pyruvate and glyceraldehyde-3-phosphate which yields 1-deoxy-D-xylulose 5-phosphate (DOXP); the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 183 8 شماره
صفحات -
تاریخ انتشار 2001